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Many research questions require analysis of complex patterns of interrelated social,
behavioral, economic and environmental phenomena. In addressing these questions, it is
increasingly argued that both spatial thinking and spatial analytical perspectives have an
important role to play. Indeed, research on social stratification and inequality, health,
mortality and fertility and many other issues depends on the collection and analysis of
individual and context-level data.

The geospatial and methodological development environment has changed. The volume,
sources and forms of available geospatial data are growing rapidly. The flow of information
from a host of sensors has grown exponentially in recent years to the point that many
observations can be geo-referenced. Data storage and handling (e.g. cloud computing)
change what, how and when we collect data on individuals and their environments.

In a world where information is increasingly seen through geographic filters, the importance
of spatial thinking is addressed. More and more instances show that space and place are
important elements and stress the leverage of place-based politics. For example,
conventional approaches in health research underestimate the contribution of place to
disease risk. Several studies reinforce the view how neighborhood context is an important
condition of human wellbeing. Place emerges as an important contextual framework for
considering a number of critical societal issues. Place as a social context is deeply connected
to larger patterns of social advantage and disadvantage.

Since the mid 1990s, there is a renewed interest in the much earlier tradition of spatial
demography that focuses on areal aggregates as units of analysis. Trends in technology
during the 1980s and 1990s brought sophistication to the world of spacial demography.
Factors contributing were :

— U.S. Census Bureau’s TIGER files ;

— extensive natural resource, crime and epidemiological databases ;

— powerful GIS software for integrating and mapping spatial data ;

— computing hardware platforms.

These factors altered the way in which spatial demography research was carried out. Other
trends that emerged were :

— the use of exploratory spacial data analysis (ESDA) ;

— the role of regression analysis in spatial demography ;

— the special nature of spatial data that requires modification to the
standard regression model (e.g. the role of geographically
weighted regrssion for exploring spatial variation);

— the need for attention both to global as well as local diagnostic
tools.

When analyzing spatial data from a large number of units (e.g. counties), it is the natural
inclination of researchers to move from simple descriptive analysis to begin asking questions
as : How might these data be modeled ? How well can we account for variability in attribute
values among geographic units ?



To answer these questions, analysts turned to multivariate regression modeling, the
common methodology in the social sciences. However, the application of the standard
regression approach to data tied to spatial units brings spacial complications because
“spatial is special”. Attention has been drawn to the fact that spatial data require special
analytic approaches.

Two properties are particularly important in the analysis of spatial data. The first, spatial
dependence, refers to the tendency for spatial data to exhibit spatial autocorrelation. For
most social phenomena mapped in space, local proximity usually results in value similarity.
High values tend to be located near other high values, while low values tend to be located
near other low values, thus exhibiting positive spatial autocorrelation. Less often, high
values may tend to be co-located with low values (or vice versa), as islands of dissimilarity
(negative spatial autocorrelation).

In either case, the units of analysis in spacial demography likely fail a key assumption of
classical statistics : independence among observations. With respect to statistical analysis
that presumes such independence (e.g. standard regression analysis), positive
autocorrelation means that the spatially autocorrelated observations bring less information
to the model estimation process than would the same number of independent observations.
The greater the extent of spatial autocorrelation, the more severe is the information loss.

A quick explanation for the presence of spatial autocorrelation can be found in the oft-cited
“first law of geography” enunciated by Tobler in 1970 : “Everything is related to everything,
but near things are more related than distant things” (Tobler, 1970 : 36). Tobler’s first law is
somewhat unsatisfying because it doesn’t tell us why this phenomenon arises in practice.
The answer to this question can only be approximated with models of the spatial process
and the analysts’s theory about the process.

The second concept refers to spacial heterogeneity, the tendency for phenomena
distributed in many spaces to be statistically nonstationary (a lack of stability across space of
one or more attribute values). Spacial heterogeneity confounds attempts to generalize
because results of an analysis of a limited area will change when the boundaries of the area
are shifted.

One of the more recent and fascinating developments in the design of local statistics is the
theoretical background and associated software to explore how regression parameters and
regression model performance vary across a study region.

Geographically weighted regression (GWR) is similar to a global regression model in that the
familiar constant, regression coefficients and error term are all present within the regression
specification. There are two ways in which GWR differs from standard (global) regression.
First is the fact that a separate regression is carried out at each location (observation) using
only the other observations that lie within a user-specified distance from that location.
Second, the regression specification includes a statistical device which weights the attributes
of nearby geographical units more highly than it does the attributes of distant geographical
units. The result is a set of local regression parameters for each geographical unit. The
regression is thus localized.



A GWR approach to regression analysis is a highly useful exploratory device for
understanding parameter heterogeneity in one’s data. The output of GWR enables the
researcher to examine and map local parameter estimates and local regression diagnostics,
thereby enabling assessment of the utility of the model for various positions of the larger
study region.

In the first part of this guide, we provide a general introduction to perform spatial regression
and spatial autocorrelation analysis. We use GeoDa, software developed by the Arizona
State  University’s GeoDa Center for geospatial analysis and computation
(http://geodacenter.asu.edu). In the second part, we model spatial data with geographically
weighted regression to explain local variations in relationships.
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The development of specialized software for spatial data analysis has seen rapid growth since
the late 1980s.

A substantial collection of spacial data analysis software is available, ranging from niche
programs and commercial statistical and GIS packages to open source software environments
such as R, Java and Python.

GeoDa, for example, is the result of the effort to facilitate spatial data analysis. The main
objective of the software is to provide the user with a path starting with simple mapping and
geovisualization moving to spatial autocorrelation analysis and ending up with spatial
regression.




GeoDa Functionality Overview

Spatial Data Mapping and Spatial Spatial
(transformation) Exploratory Data Analysis Autocorrelation Regression

input from shapefile (point, chloropleth maps, spatial weights creation, OLS and diagnostics, spatial
polygon) and text data, percentile map, outlier Moran scatterplot lag model, spatial error
centroid computation, map, smoothed rate map, model

Thiessen polygons, spatial histogram, scatterplot

lag variable construction,
rate smoothing
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Manipulating Spatial Data

1. Manipulating Spatial Data



. . . . Manipulating Spatial Data
Creating point shape files from .dbf-file

1 200 0000000 148000000 0000000 5700000 11250000 907000000 534000000
2 00 2000000 9000000 1000000 279510000 28920000 922000000 574000000
3 00 2000000 23000000 1000000 70640000 30620000 920000000 581000000
4 D00 2000000 5000000 1000000 174630000 26120000 923000000 578000000
S 200 0000000 1900000 1000000 107800000 22040000 918000000 574000000
6 00 1000000 20000000 1000000 139640000 39420000 900000000  577.000000
7 00 2000000 20000000 1000000 250000000 21880000 918000000 576000000
8 00 0000000 22000000 1000000 100000000 36720000 907000000 576000000
9 D00 0000000 22000000 1000000 115500000 25600000 918000000 562000000
10 200 2000000 4000000 1000000 365070000 44120000 897000000 576000000
11 200 0000000 23000000 1000000  SLI0OO00 19880000 916000000  569,000000
12 200 0000000 20000000 1000000 91000000 12080000  90R000000 573000000
13200 0000000 30000000 1000000 74350000 10990000 913000000  S66.000000
14 D00 0000000 20000000 1000000 46170000 13600000 910000000 574000000
15 00 0000000 18000000 1000000 23100000 12800000 922000000 569000000
16 D00 000000 75000000/ 0000000 14400000 29790000 913000000 536000000
17 200 0000000 60000000 0000000 8970000 14300000 919000000 533500000
LM MW M 00 T0MMM 100 S12srnmSssmmm

Select Variables
First Variable (X) Second Variable (Y)
[pRICE ~ | |price -
|NROOM |NROOM
| DWELL DWELL
|NBATH |NBATH
|paTIO PATIO
FIREPL |FIREPL
|AC |AC
|BMENT BMENT
NSTOR = |
|GAR
|AGE
jcrrcou
|LoTSZ
3sin
F -




Manipulating Spatial Data
Creating Thiessen polygons as shape files

00 o, 8o 99 .8 Thiessen polygons are created as a polygon shape file
"o : 50015‘30033 a . derived from a point shape file. Each Thiessen polygon
g oo T v e Lo encloses the original points in such a way that all points
[u] (] [n] [u] [a =) . .
o o poB o8 o 2ioo 87 g in a polygon are closer to the enclosed point than any
oy og Dc\g - DDDD o ¢ o h . h h . f h.
oo TSR 8 e other point. This correspons to the notion of geographic
a a2 [n] o
o e cg":ﬂ oo o wP 2% o . market area.
" et g o”Pe o
[n] [x]
DD; o EDD & o

o ="M ﬁ{
POLYID AREA PERIMETER STATION PRICE NROOM

1 1 EERT Tt ERi Al 1

2 2 19749913 17,556413 2

3 3 23291446 25,572734 3

4 4 40577874 24947434 4

5 5 20,400000 18465790 5

6 6 41,450719 26483263 6

7 7 31168254 23,806590 7

8 8 50452172 28,729254 8

9 9 25,650750 19,855806 9

10 10 76174252 37,220197 10

11 11 32,030299 22,232463 11

12 12 24584678 19,660918 12

13 13 28317198 21469213 13

14 14 36,007485 25,968686 14

15 15 22903019 18,652667 15

16 16/ 35494474 23,193386 16

. . . . 17 17 17303112 16.388330 17

Thiessen polygons allow the computation of contiguity ‘ '
based spatial weights for point data, using the boundaries Area and perimeter calculations are only supported for
of the polygons to establish contiguity. projected coordinates (Euclidean distance). For point shape

files in unprojected latitude and longitude, the results will
not be correct.



Manipulating Spatial Data

Computing spatially lagged variables

Spatially lagged variables are weighted averages of the values for neighboring locations, as specified by a spatial
weights matrix.

Variable Calculation G I~

lSpeciaI | UnivariatelBivariate| Spatial Lag |Rates

Weight
[C:\GeoDa_oefeningen\spatiaI regression\south_weights.gal v
Result | Add Variable

= Variable
[NEWVAR ~|

SQRTPPOV v

south_weights.gal is W matrix ==> NEWVAR = W * SQRTPPOV

Apply H Close

The changes and additions made to a table only reside in memory and are not permanent. In order
To make them permanent, the table must be saved to a new file :

File - Save as - Shapefile name to save as

This results in three files to be saved, with file extensions .shp, .shx and .dbf.
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Mapping and EDA

2. Mapping and Exploratory Data Analysis
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Univariate EDA

Quantile: CRIME
(] [0.1783:17.68] (8)
[ 118.6:25.96] (8)

] [26.07:34] (9)

[ [36.66:41,97] (8)
B [42.45:54.52] (8)
Bl [54.54-68.89] (8)

Equal Intervals: CRIME

[ [0.178269:17,3567] (7)
[ [17.3567:34.5352] (18)
[ [34.5352:51.7136] (13)
o [51.7136:68,892] (11)




Change Current Map Type
Save Categories

Rates

Save Rates

Shape Centers

Selection Shape
Selection Mode

Panning Mode

Zooming Mode
Fit-To-Window Mode
Fixed Aspect Ratio Mode
Color

Save Image As
Save Selection
Copy Image To Clipboard

v Themeless
Quantile
Percentile
Box Map
Standard Deviation
Unique Values

12 Natural Breaks

Equal Intervals

Univariate EDA

Hinge=1.5

| Select Variable
First Variable (X)

|Hcoo

obs 606
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/ resource deprivation index (1970)
Hinge=1.5: RD70 Hinge value of 1.5 = 1.5 times the interquartile range to define outliers Univariate EDA
| B Lower outlier (1) ]
< 25% (770)
] 25% - 50% (772)
] 50% - 75% (771)
& = 75% (701)

( B Tpper ouer )

s
-

AT
II===‘~“"‘ §=—,. 5
et
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Tabl
File Tools Table Map Explore Space Methods Options Help
@ v Y B F LW  FRLREERE
Open Table
Hinge=
S

Hinge=1.5: RD70
B Lower outlier (1)

[ <25% (770)
[ 25% - 50% (772)
[ 50% - 75% (771)
@ > 75% (701)
I Upper outlier (70)

Tabl

File Tools Table Map Explore Space Methods Options Help
@8 w WY G F PR AL R

(5' Table
070 | Pos0 POS% | RDGO RD70> )  RDS0
1454 202 408 467 -1,397535093%;5;{5 -0,1408243580 -0,5
1926 | 15198 17599 18115 -2,1847935230 -2 950, -2,2594544110
3060 | 487966 658835 781666 -1,8283811430 -2,0840058320| -2,0077769050
634 26374 37202 39413 -1,3390413980 -1,9637653500 -2,0118098600
1495 831 833 745 -0,6978742690 -1,9540836040| -1,3622795800
244 | 154712 195098 243641 -1,9338617710 -19335905940 -1,8518574700
3005 | 626204 694600 717400 -1,6349842510 -1867[7879200 -1,5877901930
2993 | 231335 280326 304715 -1,6647196050 -1,8400155780 -1,8822264300
3075 | 477002 616291 838206 -1,8038362360 -18376547980  -1,7135839120
1159 | 522800 579053 757027 -1,7657455090 -18148877570 -1,5024484300
2977 | 54461 66981 72831 -16031179130 -1,7822237600 -1,7819914000
290 | 139808 194279 275227 -1,5553849160 -1,7800136000 -1,6277827660
| 3065 | 197200 212801 215499 -1,7301144890 -1,7743867420  -1,6686565250
| 768 | 383454 407630 421353 -1,5537601710 -1,7580087770 -1,7103327120
1230 | 220073 270269 355054 -1,7695080830 -1,7100805600  -1,5709774010
590 | 103440 114823 128699 -15259168310 -1,7018201370 -15973520370
89 | womn s 240279/ 14742483330 -16977548570 15340550960 -2
!
o
=
~
I
sort on variable to find outliers
obs 1920

I

Univariate EDA
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Univariate EDA

e Tools Table Map Explore Space Methods Options Help

Hinge=1.5: RD70
Il Lower outlier (1)
B <25% (770)
[ 25% - 50% (772)
[ 50% - 75% (771)
> 75% (701)
| Upper outlier (70)

. JdEnesETe
= =
‘070 PO80 P0O90 ‘ RD60 | RD70> RD80

202 408 467 -1,3975850980 -2,7621651930 -0,1408243580 -0,5(
15198 17599 18115 -2,1847935230 -2,3589243950 -2,2594544110 -2,41
487966 658835 781666 -1,8283811430 -2,0849058320 -2,0077769050 -2,0¢
26374 37202 39413 -1,3390413980 -1,9637653500 -2,0118098600 -1,9:

831 833 745 -0,6978742690 -1,9540836040 -1,3622795800 -1,3:
154712 195998 243641 -1,9338617710 -1,9335905940 -1,8518574700 -1,61
626204 694600 717400 -1,6349842510 -1,8677879200 -1,5877901930 -1,3¢
231335 280326 304715 -1,6647196050 -1,8409155780 -1,8822264300 -1,9¢
477002 616291 838206 -1,8038362360 -1,8376547980 -1,7135839120 -2,2(
522809 579053 757027 -1,7657455090 -1,8143877570 -1,5024484300 -1,8¢
54461 66981 72831 -1,6031179130 -1,7822237600 -1,7819914000 -1,8:
139808 194279 275227 -1,5553849160 -1,7809136000 -1,6277827660 -1,6¢
197200 212801 215499 -1,7301144890 -1,7743867420 -1,6686565250 -1,2¢
383454 407630 421353 -1,5537601710 -1,7580087770) -1,7103327120 -2,2¢
220073 270269 355054 -1,7695080830 -1,7100805600 -1,5709774010 -1,7¢
103440 114823 128699 -1,5259168310 -1,7018201370 -1,5973520370 -1,8:
198372 203129 240279 -1.4742483330 -1.6977548570 -1.5340550960 -2.)2(Y

all 1)

1/10/2012
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:
Homicide data for counties around St Louis E

Multivariate EDA

Quintile map homicide rate Quintile map resource deprivation




HR7984

50

39

23

17

i |
| scatterplot
1 |
|
i |
: .
i |
. ol oo
g S fooo@ o olowa *® o o
______ fed oo | e
|
24 -14 04 06 16 26
RDACE0

HRT8:

parallel coordinate plot (PCP)

ROACH0

Multivariate EDA
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Multivariate EDA
Linking and brushing

Hinge=1.5: HR7984

I Lower outlier (0)

B <25% (19)

[ 25% - 50% (20)

[ 50% - 75% (20)
| 0 >75% (15)

[ | Upper outlier (4)

RDAC80
#obs R*2 consta std-era t-stata pwvaluea slopeb std-errb t-statb p-value b
78 0276 645 0678 952 135e-014 48 0892 538 8.05e-007
10 0571 -0442 485 -0.0911 093 18 5.52 3.26 0.0115

Quantile: RDAC80

[ 1,92:-0.8905] (16)
[ [-0,8742:0,6897] (15)
[ [0.664:-0,3178] (16)
[ [0,3169:-0,06377] (15)
Il [0,04168:2,102] (16)

11:03
1/10/2012
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Analyzing changes over time : Multivariate EDA

HR9195 o

RDACS0

HRB187 <
w\
i

RDACS0

17



CRIMINALIT

Cartogram crime rate

< HinFe=1.5: CRIMINALID
Lower outlier (0}
[ < 25% (147)
] 25% - 50% (148)
[ 50% - 75% (147)
O = 75% (123)

B Upper outlier (24)

o
[}
tr -
[N}
o
[
r-\.\_ -
(o]
o
o
[}
D -
™ o
-
m -
[}
=
D -
CRIMIMNALIT

&

Multivariate EDA
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Rate Smoothing

Ohio counties, total lung cancer deaths for
White females, 1968

Hinge=1.5: LFW68
B Lower outlier (0)
< 25% (16)
] 25% - 50% (29)
] 50% - 75% (25)
B > 75% (11)

selecting a rate variable from the data set (reveals the problem of

| Upper outlier (7) - . o
variance instability)

both the event and the population at risk are
specified and the rate is calculated on the fly

Select Variables

Event Variable

Base Variable

FIPSNO
AREA
PERIMETER
RECORD_ID
COUNTYID
LMW6ES
POPMWG3
LMBE&ES
POPMBGS
LM68
POPM6GS

POPFWES

1CDEo

=

FIPSNO
AREA
PERIMETER
RECORD_ID
COUNTYID
LMW6S
POPMWES
LMB68
POPMBGE
LM68
POPMBS
LFW68

POPFW68 i

ICDED

Map Themes  |Box Map (Hinge=15)

7

Hinge=1.5.

B Lower outlier (0)
B <25% (22)
[ 25% - 50% (22)
1 50% - 75% (22)
B > 75% (19)

[ | Upper outlier (3)

19
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Rate Smoothing

A commonly used notion in public health analysis is the concept of a standardized mortality rate (SMR), or, the ratio of the observed
moratlity rate to a national (or regional) standard. GeoDa implements this in the form of an excess risk map.

The excess rate is the ratio of the observed rate to the average rate computed for all the data. Note that this average is not the

average of the county rates (instead, it is calculated as the ratio of the total sum of all vents over the total sum of all populations
at risk).

Rq _Excess Risk Ma)

Excess Risk Map: LFW
< 0.25 (16)

1 0.25-050(6)
. 0.50 - 1.00 (3
1 1.00 - 2.00 (29

risk is lower than
state average

risk is higher than state average

20



saved to the table (right click on previous map)

Hinge=1.5: STATERATE
B Lower outlier (0}
I <25% (22)

[ 25% - 50% (22)
] 50% - 75% (22)
& - 75% (19)

[ | Upper outlier (3)

Hinge=1.5: Raw Rate LI
I Lower outlier (0)
B <25% (22)

[ 25% - 50% (22)
[ 50% - 75% (22)
B > 75% (19)

= Upper outlier (3)

G

Rate Smoothing

no difference between rescaled raw rates
and raw rates




Rate Smoothing
Empirical Bayes consists of computing a weighted average between the raw rate for each county and the state average,

with weights proportional to the underlying population at risk. Small conties will tend to have their rates adjusted
considerably, whereas for larger counties the rates will barely change.

Hinge=1.5: EBS-Smoothed LFW68 over POPFW68
B Lower outlier (0)

B <25% (22)

[ 25% - 50% (22)

] 50% - 75% (22)

[ = 75% (21)

[ | Upper outlier (1)

a new outlier is added

22



&

Rate Smoothing

Spatial rate smoothing consists of computing the rate in a moving window that includes the county as well as its neighbors.
In GeoDa neighbors are defined by means of a spatial weights file.

We will construct a simple spacial weights file consisting of the 8 nearest neighbors for each county in the Ohio shapefile.

Shapefile C:\data\geoda\ohiolung\ohlung.shp

Add ID Variable... | Weights File ID Variable | FIPSNO >

Contiguity Weight
Queen Contiguity Orde it 1

) Rook Contiguity Include lower orders
Distance Weight
Select distance metric [<Euclidean Distance> v]
Variable for x-coordinates [<X-Centroids> v}
Variable for y-coordinates [ <Y-Centroids> v ]

_) Threshold Distance 40215,536482

Number of neighbors

Q) k-Nearest Neighbors

Message

0/ Weights ffle “ohlung_NN.gwt™ Yreated successfully.
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Select Variables

Event Variable Base Variable

FIPSNO FIPSNO
AREA AREA
PERIMETER PERIMETER
RECORD_ID RECORD_ID
COUNTYID COUNTYID
LMW6S LMWes
POPMWBE POPMWEE
LMB6S LMEBEGS
POPMB&ES POPMB&S
LM68 LME8
POPM6GE POPMGE

LFW68

POPFW6GSE POPFW68 L

ICDES ICDES

Map Themes lB{n{ Map (Hinge=1.5)

Hinge=1.5: SRS-Smoothed LFW68 over POPFWES

| B Lower outlier (0)

I <25% (22)

l 0K l [ Cancelll [ 25% - 50% (22)

] 50% - 75% (22)
I = 75% (22)
[ | Upper outlier (0)

G

Rate Smoothing

A spatially smooted box map emphasizes broad regional patterns.

Note how there are no more outliers.

24



3. Spatial autocorrelation

Spatial Autocorrelation



Spatial Autocorrelation

Spatial autocorrelation is a measure of spacial dependency that quantifies the degree of spatial
clustering or dispersion in the values of a variable measured across a set of locations.

There are two basic types of spatial autocorrelation statistics : global measures identify whether the
values of a variable exhibit a significant overall pattern of regional clustering, whereas local measures
identify the location of significant high and low value clusters.



Spatial Autocorrelation

e Basics: Steps in determining the extent of spatial autocorrelation :
— choose a neighborhood criterion : which areas are linked ?
— assign weights to the areas that are linked : create a spatial weights matrix

— run statistical tests, using weights matrix, to examine spatial autocorrelation

27



Spatial Autocorrelation

Spacial autocorrelation measures the correlation of a variable with itself through space. Spacial
autocorrelation can be positive or negative. Positive spatial autocorrelation occurs when similar values
occur near one another. Negative spatial autocorrelation occurs when dissimilar values occur near one
another.

Spacial weights are essential for the computation of spacial autocorrelation statistics.

Spacial weights can be based on contiguity from polygon boundary files or calculated from the distance
between points.

28
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Contiguity Based Weights

uses only common boundaries to define neighbors

polygon
shape files

rook contiguity

CONTIGUITY

BASED

WEIGHTS queen contiguity

1st order higher order

uses all common points (denser connectedness structure)

removes redundancies and
circularities in the weights
construction

29
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Rooks Contiguity

flag, number of observations, name of polygon shape file, name of the key variable

Bestand Bewerkep Opmaak Beeld Help

[] 403 sacramentot? POLYID | -

109875432
31
1

12
0
928 27 181210166 91

Hosrw s

Shapefile | C\data\geoda\sacramento\sacramentot2.shp 711 3 25 4

=

Add ID Variable... Weights File ID Variablg | POLYID

Contiguity Weight

6 1

71

SN0 WD GO GO ™ WD ON M W ] s O DY

Heao e oo

85

=
=]
w

Order of contiguity 1 E
- 1251

[]Include lower orders 11 8

44 34 30 25 20 16 26 6
12 4

: ) - - 29 14 5 10

Select distance metric <Euclidean Distance » 13 6

40 36 19 33 39 15

Yariahle for x-coordinates | <X-Centroids > 14 ?

Yariable fory-coordinates | <Y-Centroids:> i; :SLZ
r 33 23 17 29 13
16 7
57 52 51 18 44 11 5
17 3
_ L 29 14 15
© kN 85
54 45 27 16 5 4
4| n L]

© Thed Message

30



l:lselented features
[ EYEH
[ G
| EREES
- 103
s 114)
[ e
B
[ EXEE
28
o
R
Bz
B 1= (0

Rooks Contiguity
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Shapefil{ C\data\geoda\sacramento\sacramentot2.shp

‘ Add ID Variable... Weights File ID Variable

Contiguity Weight

POLYID

(@ Queen Contiguity ~ Order of contiguity

(") Rook Contiguity ["]Include lower orders
Distance Weight

Select distance metric '<Euclidean Distance> v \
Variable for x-coordinates | <X-Centroids> v |
Variable for y-coordinates | <Y-Centroids> ¥ !
(") Threshold Distance | 0.0 |

{ — Message

) k-N .a Weights file "sacramentot2_Q.gal" ]reated successfully.

&

Queen Contiguity

32



Contiguity Based Weights

T selected feature]
1
28
3(33)
4{103)
5{114)
873
T{35)
B{17)
219
10 (4)
11 (4)
12(3)
13 (0}
14 (1)

’ Connectivity of C\data' cramento\sacramentot? ... =

[ieiected feat
[ P
Bz

3(20)
B4 a5
[ )
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Higher Order Contiguity

Pure 2"¥order Rooks Contiguity
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Higher Order Contiguity

Cumulative 2" order Rooks Contiguity

Select the neighborless obsenvation

Connectivity

36



Higher Order Contiguity
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Distance_Based Weights

GeoDa calculates the minimum distance required to assure that each observation
has at least one neighbor

point or polygon
shape files

threshold distance

DISTANCE
BASED
WEIGHTS

K-nearest neighbors
/

1st order higher order

Spacial weights based on distance threshold can lead to a very unbalenced connectedness structure (esp. In the
case when spacial units have very different areas, with small areas having many neighbors while larger ones may
have only a few). A commonly used alternative consists of considering the k-nearest neighbors.
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Distance_Based Weights

In contrast to contiguity weights, distance-based spatial weights can be calculated for both point shape files as well as
polygon shape files. For polygon files, if no coordinate variables are specified, the polygon centroids will be used as the
basis for distance calculation. When polygon shape files are used, maps must be projected (e.g. UTM) for proper computation of

centroids. For unprojected maps, the resulting centroids will only approximate.

R Weights File Cre

N Shapefil¢ C\data\geoda\boston\boston.shp
Add ID Variable... Weights File ID Variablt lPOLY_ID I vl
Contiguity Weight
Queen Contiguity Order of contiguity 1
Rook Contiguity Include lower arders

Distance Weight

o Select distance metric /lﬂEucIideanDistance> -

o Variable for x- ordinateslx vl
=]

o e Variatile for y-coordinates ly vl

(@ Threshold Distance 3972568

X

| | Weights fild "boston.gwt] created successfully.

the minimum distance
required to ensure that
each location has at least
one neighbor

if the points are in latitude and
longitude, select the <Arc Distance>

option 39



| boston.gwt - |

Bestand Bewerken Opmaak Beeld Help
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"y

506 boston POLY_ID

34
33
32
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28
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24
23
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21
20
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27
500
498
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35
502
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2

3
30
45
50
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30
29
27
13
47
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34

.07546744
. 77108282
. 49721845
.83677634
.07668653
.29875734
-18001572
.04179223
.23945983
.64012362
.38292773
.69871599
-83005222
.81559956
. 78179798
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3.82973889
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3.80474703
2.64594029
3.6840874
3.58615393
3.63455637
3.48058903
2.56976653
3.5730799
3.70194543
3.23790055
2.81305883
1.06569226
1.01607086
0.800999376
2.05039021
2.53647393
2.89546197
2.75036361
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&

Distance_Based Weights

distance between neighbor pairs

Connectivity for distance-based weights

The distribution has a much broader range compared to contiguity-based weights.
Some points are clustered while other are far apart. The minimum threshold needed
to avoid islands may be too large for many or most locations in the data set. In such
cases, care is needed in the specification of the distance threshold, and the use of
K-nearest weights may be more appropriate.
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Spatially Lagged Variables

Spatially lagged variables are an essential part of the computation of spatial autocorrelation tests and the specification
of spatial regression models. GeoDa computes these variables on the fly, but in some instances it is useful to calculate
spatially lagged variables explicitly.

We will calculate a spatially lagged variable for the variable HH_INC (census tract median household income) in the Sacramento
file. T . & % |

The first thing we do is open the spatial weights file we created.
Then we create a new field that is added to the table.

DCC_INFO FIPSNO HH_INC W HHINC | POV_POP POV_TOT
1 42 6061022001 52041 56+86:3508600 5461 470 —
OCC_MAN OCC_OFF1 OCC_INFO HH_INC POV_POP POV_TOT -

2 19 6061020106 51958 |50164,0000000 2052 160 = = — P e e o
3 6061020107 32992 550220000000 3604 668 2 38 229 19 51958 2052 160
4 6 6061020105 54556 535322500000 1683 116 3 86 197 0 32992 3604 668

4 5 256 6 54556 1683 116
5 59 6061020200 50815 53169,5000000 5771 342 S = = = e e e
6 9 6061020101 60167 50673,5000000 755 63 6 1 111 9 60167 755 63
7 5 6061020104 49063 54958,7500000 1775 203 7 42 101 5 49063 1775 203

8 4 8 52171 1096 56
g 8 6061020103 52171 56167,7500000 1096 56 - = = =~ o500 == =~
9 31 6061020102 62500 54023,5000000 1102 50 10 129 589 7 46747 5249
10 73 6061022002 46747 52918,6666667 5249 370 | variable Calculation
11 15 6017030503 51333 473001,7500000 1184 90 ‘jspecia.]u,.iva.iate]sivanate? Spatial Lag
12 5 6061021901 55000 51438,5000000 3008 206
13 57 6061021304 52286/ 57758,6666667 4692 328 o

Weight m
14 84 6061021902 59443 61150,0000000 4286 130 —
15 30 6061021600 38854 55771,8000000 6866 673 E\data\geods\sacramentolsacramentot2 Roal
16 31 6017030603 41982/ 46819,7142857 2759 229 e Vaable
17 44 6061021801 67300 49008.6666667 4026 o147 e -]
sacramentot2_R.gal is W matrix ==> W_HH_INC = W * HH_INC
The value of the spatially lagged variable “W_HH_INC” for this | sopy | [ ciose

location is the mean of its neighbors a1



W HH_ING

26000 43000 60000 77000 94000

18000

Spatially Lagged Variables

0000

20000 50000

#obs R*2  consta  stdema
403 0.572 2.11e+004 1.25e+003

t-stat a pvalue

16.9

HH_INC

0

50000

110000

B slope b
0.563

0243 232 0

td-err b t-stat b pvalue b

140000

Moran's |- 0,663228

lagged HH_INC

HH_INC
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Global Spatial Autocorrelation

Global spacial autocorrelation is handled in GeoDa by means of Moran’s | spatial autocorrelation statistic
and its visualization in the form of a scatterplot.

Global spacial autocorrelation requires a spatial weights file and a variable must be specified.

Spacial autocorrelation analysis is implemented in its traditional univariate form as well in a bivariate
form.

File Tools Table Map Explore Space Methods Options Help
| @RS we e | E L A @R
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Moran’s | for Columbus data
(variable = crime ; spacial weights file =
rooks-based contiguity file)

Quantile: CRIME
[ [0.1783:18,91] (10)
[ [19.1:29,03] (10)
[ [30,52:38.43] (9)
I [39.18:52.79] (10)
Bl [53.71:68.89] (10)

Global Spatial Autocorrelation

0.4
.

lagged CRIME

06
1




Global Spatial Autocorrelation

negative autocorrelation

Moran's I: 052367 positive autocorrelation

04

w
=
z
S
-
]
Ey
3
=

06
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Global Spatial Autocorrelation

reference distribution calculated for spatially random layouts with the same data as observed
(none of the simulated values is larger than the observed 0.52)

—> Moran’s |
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, Global Spatial Autocorrelation
Hinge=1.5: Raw Rate CANCER over POP

B Lower outlier (0)
< 25% (14)
(] 25% - 50% (14)
] 50% - 75% (14)
& = 75% (13)
[ | Upper outlier (1)

Weights File Creation [ 2¢
Shapefile Chdata\geoda\scotlip\scotlip.shp
Add ID Variable... Weights File ID Variable [RECORD_ID vl
Contiguity Weight o -
() Queen Contiguity Order of contiguity 1 |
(”) Rook Contiguity Include lower orders - | Moran’s | = 0.479487
Distance Weight |
Select distance metric l-:EucIidean Distance = v] |
[V
L
Variable for x-coordinates l <X-Centroids> b ] '5: DI LI
o
Variable for y-coordinates l-:Y-Centroids:» v] % : 5o = o
. EEI - 4 - = ‘Lﬁ —_—
() Threshold Distance 210685,298938 o 8 %4 8
=
& |
k:
o - |
(@) k-Nearest Neighbors ~ Number of neighbors 5 = |
Message u =+ I
— |@ Weights file "scotlip.gwt” created successfully. |
w T T I| T T 1
-m 6 4 -2 0 2 4 6
R_RAWRATE
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——

¢ Moran’s I (scotli

lagged R_RAWRATE

n): R_|
AR

o

Moran's |- 0.479487

G

Global Spatial Autocorrelation

the slope of the regression line changes
as specific locations (in this case 1 location)
are excluded from the calculation

48



Inference for Moran’s | is based on a random
permutation procedure, which recalculates the
statistic many times to generate a reference
distribution. The obtained statistic is then
compared to this reference distribution and a
pseudo significance level is computed.

Global Spatial Autocorrelation

BELNyLAlONg1E% 001000
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Ouantiile: R090
O [-241:-0i6668] ,(771)
O  [-0,i6667:-0,2:01i6] ,(772)
O  [02:007:0,4393] ,(771)
[0,4411:5583] ,(771)

sad

eights File Creation

==

- -

Shap efile  C:\ d ata\ examples\ N AT., hp

| Add 1D variable...

Contiguity Weight

@ Queen Contiguity

Rook Contiguity
Distance Weight

Select distance metric

Variable for x-coordinates

Variable for y-coordinates

Weights File ID Variable [FIPSN O

Order of contiguity

| D Include lower orders

<Euclidean Dist ance> v
<X-! id» v
<Y-Centroid» v

7

Message

e

‘ ‘0 Weights file "N

AT.gal" created successfully.

__ R M oran's | (N

A county’ s spatial lagis a weighed average of

the resource deprivation of its neighboring localities.

"7

Moran's |: 0,678401

Global Spatial Autocorrelation

= | (5] [
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Local Spatial Autocorrelation

Global measures : global spatial autocorrelation (Moran’s 1) : a single value which applies to the entire

data set (the same pattern or process occurs over the entire geographical area ; and average for the entire
area).

Local measures : local spatial autocorrelation (Lisa) : a value calculated for each observation unit
(different patterns of processes may occur in different parts of the region ; a unique number for each
location).
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Local Spatial Autocorrelation

Local spatial autocorrelation is based on local Moran LISA statistics. This yields a measure of spatial
autocorrelation for each individual location.

Both univariate and multivariate LISA are included in GeoDa.

The input needed for local spatial autocorrelation is the same as for global spatial autocorrelation.

File Tools Table Map Explore Space Methods Options Help
EE T =P D | F A B
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LISA Cluster Map: NA1
] Not Significant (18

B High-High (508) =
B Low-Low (662)
E Low-High (26)
] High-Low (41)

xxxxx

Local Spatial Autocorrelation

[ 1] Fx

the high-high and low-low locations (positive
local spatial autocorrelation) are typically
referred to as spatial clusters, while the
low-high and high-low are termed spatial
outliers (while outliers are single locations
by definition, this is not the case for
clusters)

& USA Significance Map: NAT, I RD0 (499 perm)

LISA Significance Map
] Not Significant (18
[ p=0.05 (568)
B p=0.01(669)
B 5-=0.001(0)

Bl o =0.0001(0)

the significance map shows
the locations with significant
local Moran statistics
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<

[V] Lisa Indices
[V] Clusters

[ Significances

Add Variable [IICA 1

Add Variable ﬂch el
Add Variable | |

|

OK

[

LISA_CL LISA I NAME STATE_NAME
2,0000000 0,4063892 Cumberland  Illinois
2,0000000 1,1044196 Lake Colorado
0,0000000 -0,0126622 Highland Ohio
4,0000000 -2,8967002 Baltimore City Maryland
0,0000000 0,1267298 Kent Delaware
2,0000000 2, 7504658 Howard Maryland
0,0000000 0,0376040 Mesa Colorado
2,0000000 1,1310488 Pitkin Colorado
2,0000000 2,2066823 Montgomery  Maryland
0,0000000 0,0924545 Audrain Missouri
0,0000000 0,0992801 Howard Missouri
2,0000000 0,8703036 Bartholomew | Indiana
2,0000000 0,9870944 Brown Indiana
2,0000000 0,2193181 Monroe Indiana
0,0000000 0,0038556 Grant West Virginia
(0,0000000 0,1064690 Cape May MNew lersey

&

Local Spatial Autocorrelation
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Local Spatial Autocorrelation

The result for univariate LISA is a special chloropleth map showing those locations with a significant local Moran statistic
(depending on the significance level). In the map blow, the significance map is shown for the CRIME variable in the Columbus
Data set, using rook contiguity.

LISA Significance Map
(] Not Significant (31
@ p=005(12)

B p=001(6)
B =0.001(0)
I - -0.0001(0)
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Local Spatial Autocorrelation

The result of the cluster map is a special choropleth map showing those locations with a significant local Moran statistic
Classified by type of spatial correlation : bright red for the high-high association and bright blue for low-low.

The high-high and low-low locations suggest clustering of similar values, while the high-low and low-high locations
Indicate spatial outliers.

LISA Cluster Map: rook
Mot Significant (31
High-High (10}

]
|
B Lovw-Low (7)
(|
(|

Low-High (0)
High-Low (1)
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LISA Significance Map
[ Not Significant (30
[ p=005(15

| B p=001(4)

| Hl p=0.001(0)

| Il p=0.0001(0)

LISA Cluster Map: colu
[ Not Significant (30
Il High-High (10)

3

Randomization

Significance Filter
Add Neighbors To Selection
Select All...

Shape Centers

Selection Shape
Selection Mode
Panning Mode
Zooming Mode
Fit-To-Window Mode
Fixed Aspect Ratio Mode
Color

Save Image As
Save Selection
Copy Image To Clipboard

W Low-Low (8)
Low-High (0)
[ High-Low (1)

T e oY

Local Spatial Autocorrelation

It is strongly recommended that sensitivity analysis
be carried out before interpreting results of
LISA maps as “significant” clusters.

The randomization option provides a way to
address numerical stability of the results.

The significance filter is designed to assess how
conclusions depend on the chosen significance
level.

17:14
2/10/2012

A MW oal e
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LISA Significance Map
I Nt Significant (42
I p=001()

M 5=0.001(1)

I 5 =0.0001(0)

LISA maps after applying a significance filter.

LISA Cluster Map: colu
] Not Significant (42
B High-High (4)
W LowLlow (3)
Low-High (0)
[ High-Low (0)

Local Spatial Autocorrelation
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Local Spatial Autocorrelation

When Moran’s | statistic is calculated for rates or proportions, the underlying assumption of stationarity may be
Violated by the instrinsic instability of rates. The latter follows when the population at risk (the base) varies
Considerably across observations. The variance instavility mat lead to spurious inferences for Moran’s .

To correct for this, GeoDa implements the Empirical Bayes (EB) standardization. This is implemented for both the global
(Moran scatter plot) and local spatial autocorrelation statistics.

To illustrate this, we will use the Scottish lip cancer data set and associated weights file to compare the results of
calculating Moran’s | based on the non-standardized rates with the results of the EB standardization.

Empirical Bayes Rate Endarﬂizaﬁon VaﬁEble!gl

Select Variables
Event Variable Base Variable
CODENO CODENO
AREA AREA
PERIMETER PERIMETER
RECORD_ID RECORD_ID
DISTRICT DISTRICT
CANCER CANCER
POP
CEXP CEXP
AFF AFF
OK ] l Cancel
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. Emp Bayes Rate Std Moral
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Local Spatial Autocorrelation

The value for Moran’s | of 0.527 differs somewhat from
the statistic for the unstandardized rates (0.479).

More important is to assess whether or not inference is
affected. The resulting permulation distribution still
suggests a highly significant statistic.
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Spatial Autocorrelation

* Practice : Spatial patterns of rural poverty : An exploratory analysis in the Sdo Fransisco
River Bassin, Brazil (Nove Economia_Belo Horizonte_ 21 (1), 45-66_janeiro-abril de 2011).

This study uses recently released municipio-level data on rural poverty in Brazil to identify and analyze spatial
patterns of rural poverty in the SFRB.

Moran’s | statistics are generated and used to test for spatial autocorrelation, and to prepare cluster maps that
locate rural poverty “hot spots” and “cold spots”.

The results indicate that poverty reduction in the SFRB should take into account the spatial distribution of
poverty. Not only is poverty in the SFRB clustered spatially, but the bulk of the bassin’s poor resides in
municipios that comprise the poverty “hot spots” the study identifies. These clusters did not correspond to
state-level boundaries, so scope may exist for geographically refocusing poverty reduction efforts to make
them more efficient.
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examine spatial patterns

oran’s | spatial autocorrelati

LISA cluster analysis

policy suggestions

G

Spatial Autocorrelation

Construct maps to examine the distribution of
rural poverty across the basin.

Statistically confirm the spatial patterns
of rural poverty.

Redesign poverty programs to make them more
effective.
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Figure 1_ 5ao Francisco River Basin: Percent Rural Population that is Poor, 2003

Petrolina

Aracaju ®

Percent Rural Population
that is Poor, 2003
at ‘Municipio’ Level
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Data Source: Azzoni & 4! (2006). Data aggregated to match mmigpio boundaries s of 1991
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Spatial Autocorrelation
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Spatial Autocorrelation

Information on spatial patterns of rural poverty in the SFRB may shed light on the importance of location
as a causal factor per se. Municipios may be more likely to have high (or low) rural poverty rates
depending on where they are located geographically :

— one obvious reason is the stock of natural resources (natural resources are not evely distributed

across space) : for farm activities, for example, good soils and easy access to water may improve
agricultural conditions, productivity and income ;

— job and income providers such as firms and service-oriented businesses tend to concentrate in space

in order to benefit from large markets (economies of scale) and the availability of specialized skilled
labor.
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Spatial Autocorrelation

The value of Moran’s | is equal to 0.72, which suggests a strong postitive spatial autocorrelation of rural
poverty. This number suggests that for the SFRB, there are more locations wich high (low) rural poverty
rates surrounded by locations with high (low) rural poverty rates than would be the case if poverty were
distributed randomly.

The value of Moran’s | also suggests that poverty in the SRFB is spatially distributed in clusters and also
suggests that poverty in neighboring areas increases the likelihood of poverty in its neighbors. However,
the value of Moran’s | does not tell us where rural poverty clusters might be, but rather suggests that the
spatial pattern of poverty is not random (there is more similarity in poverty (or the absence of its) than
would be expected if the pattern were random).

Making use of EB-standardization to reduce variance instability, delivers a coefficient of 0.83 compared to
the initial calculation of Moran’s I. This indicates that the correlation between rural poverty rates in
location i and neighboring locations is stronger when rates are standardized. Hence, increasing the
precision with which rural poverty is measured will likely increase the spatial correlation among rural
poverty rates in the SFRB.



Spatial Autocorrelation

Although a Moran | of 0.83 strongly shows that the spatial distribution of rural poverty is not random, it
does not locate poverty clusters.

To locate “hot spots” and “cold spots”, local indicators of spatial autocorrelation must be used (LISA). LISA
provides location-specific information and estimates the extent of spatial autocorrelation between the
value of a given variable (rural poverty) in a particular location and the values of the same variable in
locations around it. This makes it possible to identify spatial clusters of rural poverty.

3 clusters of rural poverty in the SFRB are detected by LISA. Clusters 1 and 2 are rural poverty “hot spots”
and correspond to positive and high-high spatial autocorrelation, indicating spatial clusters of locations
with above-average rural poverty rates. Cluster 3 is a “cold spot” and also corresponds to a positive, but
low-low spatial autocorrelation, indicating a cluster of locations with below -average rural poverty rates.



Figure 3_ Local spatial clusters of rural poverty across the “municipios” in the S3o Francisce River Basin

Cluster 1
Cluster 3

Cluster 2

[ ] Not Significant
B low-low
I High-High
[ ] High-Low
Low-High

Data Source: Data from Azzom ¢f 2! (2006). Map developed by the zuthors.
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Spatial Autocorrelation
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Spatial Autocorrelation

As mentioned before, the clusters of rural poverty may be attributable to several reasons. But further
analysis is required to determine the causes of spatial patterns of rural poverty in the SFRB. Multivariate
regression analysis that takes into account the variables that may explain poverty is the appropriate
approach to the analysis of the spacial determinants of patterns of rural poverty in the SFRB.

The results of this study suggest that poverty reduction policies in the SFRB should take into account the
spatial distribution of poverty. The analysis suggests that location as a causal factor per se is important
and locations are indeed more likely to have high (or low) rural poverty rates depending in where they are
located in the basin. This may be due to obvious reasons such as stock of natural resources, soil quality,
access to water, etc.

More importantly, the analysis shows that poverty in one location is affected by (or affects) poverty in
neighboring locations. That is, there are spillovers, either positive or negative externalities that make
locations more or less likely to get out of poverty. These spillovers may be associated with the
concentration (or lack of concentration) of firms, technology and knowledge. These results set the stage

for identifying factors that influence rural poverty in the SFRB, factors that may themselves be spatially
correlated.



Spatial Regression

4. Spatial regression



Spatial Regression

When moving from simple descriptive analyses to data modeling, analysts turn to multivariate regression
modeling to account for variability in attribute values among geographic units by identifying other
covariates of the attribute of interest.

Attributes of spatially referenced data generally violate at least one of the assumptions underlying the
standard regression model, which necessitates both caution regarding these violations and attention to
methods designed to correct for them.
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Spatial Regression

Spatial variation : spatial heterogeneity versus spatial dependence

When undertaking initial EDA of spatial data, it is worthwhile to develop a sense of the spatial distribution
of the attribute values. By mapping the distributions of variables across space, a distinction can be made
between two types of spatial dependence.

Spatial heterogeneity : large-scale regional differentiation (among attribute values) is an important
component of spatial variation. Spatial heterogeneity is the lack of stability across space of one or more
attribute values. Heterogeneity gives recognition to the common observation that values of a variable are
not the same across space.

Spatial heterogeneity follows from the intrinsic uniqueness of each location. Spatial heterogeneity is
consistent with the description of how places are particular moments of intersecting social relations. The
unique combination of social forces together in one place may produce effects which would not happen
otherwise. These social forces include nonmaterial forces (e.g. cultural and/or historical processes) that
cannot easily or always be quantified, yet these forces shape otherwise measurable social relationships.
The spacial regime approach permits the analyst to move beyond geography per se, by focusing on social,
economic and demographic factors - or, combined , sociological factors — that comprise the context of
place. This approach is intended to enable the analyst to address the “so what” question : what is it about
a place that distinguishes it from other places ?
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Spatial Regression

*  Spatial dependence refers to small-scale spatial effects that manifest a lack of independence among
observations (spatial clustering). The assumption is that dependence among the observations derives
from spatial interaction among the units of analysis which can be defended theoretically and which can be
statistically captured by a spatially lagged “neighborhood” effect.

*  Two forms of spacial models are commonly used to improve regressions on spatially correlated data :

— The spacial lag model : if two locations are adjacent, the value of the dependent variable of the first
locations can be influenced by the value of the dependent variable of the other. This means that
there is a contagion or dispersion effect, represented best by a spatial lag model.

— The spacial error model : if the error residuals of locations are influenced by one another, this means
that the phenomenon under study is not analysed at the correct geographical level, or that there
might be an unobserved variable correlated with the spatial structure of the data. This would imply
a clustering effect and this has to be studied by a spatial error model.

*  Aspatial lag model is appropriate if neighboring locations influence one another ; the spatial error model
documents that locations geographically cluster but for an unknown reason.
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spatial hereogeneity across counties and
spacial dependence (clustering)

Population Change, 1990-2000
Decline greater than 10% (2 L %)
Declin= betwesn 5% =nd [0% (13 5%)

B nitixce d berwonn -+ 5% (37 6%)

B G ot ot en 39 and 109 (14.6%)

a 300 €00 1,200 Ddiles

I O:ott: g salec than 10% (26 3%) L 1 | |

Spatial distribution of population change among Great Plains Counties, 1990-2000

W_(log) Population Change

&

Spatial Regression

Moran's [= 0.3416

-10 C5] Q 5 10
(log) Population Change

Moran scatterplot of population change

Source : P.R. Voss, K.J. Curtis White & R.B. Hammer : Explorations in spatial demography, in W.A. Kandel & D.L. Brown, Population change and rural society, Springer,

2006, pp. 407-429)
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Spatial Regression

A model with spatial lags is able to borrow information from neighborhood observations because of the
spatial autocorrelation among the units of analysis. The units of analysis likely fail a formal statistical test
of randomness and thus fail to meet a key assumption of classical statistics : independence among
observations. With respect to statistical techniques that presume such independence (e.g. standard
regression analysis), positive autocorrelation means that the spatially autocorrelated observations bring
less information to the model estimation process than would the same number of independent
observations.

A carefully selected variable can account for spatial heterogeneity in the data and might boost the
explanatory value of the model and largely remove the large-scale spatial process, but spatial
autocorrelation would persist if a spatial dependence process were also indicated. There would remain in
the data a more complicated, interactive spatial relationship among neighbors that suggests the
requirement of some type of autoregressive term in the regression specification.



Spatial Regression

The aim of the researcher is to specify and estimate a model that reasonably accounts for or incorporates
that spatial effects present in the data. These effects can be modeled as spatial heteregeneity and spatial
dependence. When first examining a spatial relationship, the reseacher must ask whether the association
appears to be a reaction to some geophysical, cultural, social or economic force that works to create
spatial patterning (spatial heterogeneity), or an interaction, indicative of spatial dependence.

If the association is merely a reaction to some general force, then a modeling strategy with a standard
regression structure may be appropriate.

If, on the other hand, the association is an interaction suggesting some type of formal dependency among
units, then a modeling strategy with a spatial dependent covariance structure is the way to proceed. In
this instance, heterogeneity likely will not fully remove the spatial effects within the data. An alternative is
needed — a spatially oriented approach that formally incorporates a spatially lagged dependent variable
or spatially lagged error term.



« Spatial dependency modeling : example 1

&

Spatial Regression

. The shapefile newyork.shp is the map of Manhattan in New York City with Census 2000 data* . These are socioeconomic attributes for

297 Census tracts. It includes the following variables:

POLYID Polygon ID

STATE State FIPS

COUNTY County FIPS

TRACT Census Tract ID

sctrct00 FIPSID

hvalue Median housing value

t0_pop Total population

pctnhw Percent non-Hispanic white persons
pctnhb Percent non-Hispanic black persons
pcthsp Percent Hispanic persons

pctasn Percent Asian persons

tOp_own Percent homeowners

tOp_coll Percent college educated

tOp_prf Percent of people employed in professional/managerial occupations
tOp_uemp Percent of people unemployed
tOp_for Percent foreign born persons

tOp_rec Percent recent immigrants

t0_minc Median household income

tOp_poor Percent total population below poverty

* Source : http://www.s4.brown.edu/S4/Training/Modul2/GeoDa3FINAL.pdf
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Before starting a regression, create a weights file :

Shapefile C\GeoDa_oefeningen\spatial regression\MewYork.shp
Weights File ID Variable
Contiguity Weight
() Queen Contiguity Order of contiguity 1

@ Rook Contiguity ["]Include lower orders
Distance Weight

Select distance metric <Euclidean Distance: A
Wariakle for x-coordinates | <X-Centroids:> hd
Variable for y-coordinates | <Y-Centroids:> 4
() Threshold Distance 0.0
©) k-Nearest Neighbors ~ Number of neighbars . 4

Message u
|® Weights file fnewYork.gal“Jcreated successfully.

|

Spatial Regression
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Spatial Regression

In this example, we will predict neighborhood homeownership with several indicators :

Select Variables Dependent Variable
] STATE Independent Variables
Report Title (T:;)ﬁgw PCTNHW
Regression SCTRCTOO PCTNHB
HVALUE TOP_COLL
Output file name lgﬁ%{; TOP_FOR
PCTASN ToMne
:gressionyNewYorkRegression.tut TOP PRE TOP_POOR
07 AT
Infarmation in the output includes: <=
[ ] Predicted Value and Residual
[] Coefficient Variance Matrix
|
Moran's1 z-value Weights File |C\GeoDa_oefeningen\spatial regression\new vl

@) Classic ©) Spatial Lag (©) Spatial Error

Run Save to Table

Reset View Results

g
8
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insignificant effects

_

SUMMARY OF OUTPUT: ORDIMARY LEAST SOUARES ESTIMATION

i NewYork
Dependent Variable TOP_OWH  HNumber of Ohservations: 297
Mean dependent wvar 18,487 MNumber of Variables : g
5.0. dependent wvar 18.7788 Degrees of Freedom : 289
h E-sguared 0.495409 |F-statistic : 40,5344
Adjusted R-sguared 0,483187 Prob(F-statistic) :1,62532e-039
Sum sguared residual: 52848,3 Log likelihood : -1190,87
Sigma-sgquare : 132,866 Akaike info criterion : 2397 ,74
53.E. aof regression 13.5228 BSchwarz criterion : 2427 ,29
Slgma-square ML 177,94
53.E of regression ML: 13,3394
YVariahle Coefficient Std.Error t-Statistic Probability
CONSTANT -0,1177227 4,497595 -0,0261746 0,9790%65
PCTHHW 0,3273164 0,08210561 3.,986%9604 0,0000842
PCTNHE 0,1429145 0,049442968 2,5904935 0,0041380
TOF COLL 0, 2569445 003145949 -3,154245 0,0017787
OF_UEMP 0,1173606 0,1104485 1,062601 0,258858514
TOP_EOR 0_0R9523608 0 _0r435497 1 080316 02809014
TO_MINC 0,000293414 4,489094=-005 b,536132 0,0000000
TOF_POOR -0,2369784 0,1065372 -2,224373 0,02658958

m

G

Spatial Regression
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Spatial Regression

Test of multicollinearity of the model : one should be alarmed when the condition number is greater than 20.

REGRESSION DIAGHOSTICE

========================= FND OF REPORT

Jarque-Bara test is used to examine
the normality of the distribution

of the errors. The low probability
of the test score suggests non-
normal distribution of the error
term.

The low probabilities of the
three tests point to the

Both tests of the lag and error are significant, indicating presence of spatial dependence.
The robust test help us understand what type of spatial dependence may be at work. The robust measure for error is still significant, but the
robust lag test becomes insignificant, which means that when the lagged dependent variable is present the error dependence disappears.

MULTTCOLLIMEARTITY CONDITIOW MUMEER 18,185918 |
TEST UM NORMELCITT OF ERRORS
TEST DF VALLUE PROB
(Tarque-Fera 2 1185,541 0, 0000000
lnThﬂMHQTThq FAF HFETFRASEEDASTICTTY)
RAMDOM COEFFICIENTS
TEST LF VALUE FROEB
Breusch-Pagan test 7 102,959 0.0000000
Foenker-Bassett test 7 18,45908 0,0100618
SPECIFICATION ROBUST TEST
TEST LF VALUE FROEB
White 35 185,7326 0.0000000
DIAGNOSTICE FOR SPATIAL DEPENDEHCE
FORN WEIOHL M&IRIX : NeWwrork.gal

{row-standardized weights)
TEST MI~DF VALUE FROEB
Moran's I {error) 0,196095 5,7432856 0.0000000
Lagrange Multiplier (lag) 1 21,5140654 0.0000035
Fobust LM {lag) 1 0,1141221 0,7354991
Lagrange Multiplier (error) 1 27.8417603 0,.0000001
Fobust LM (error) 1 f,.4418140 0,0111465
Lagrange Multiplier (SARMA) 2 27,9558824 0,0000009

m

existence of heteroscedasticity.
Error variance can be affected by
spatial dependence in the data.

Moran’s | suggests

spatial autocorrelation
of the residuals.
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Spatial Regression

After identifying the presence of spatial dependence, we will use GeoDa to re-estimate the model when
controlling for spatial dependence.

-
Select Variables Dependent Variable
STATE Independent Variables
'(I;IE{)J!}\J(I;ITTY PCTNHW
SCTRCTOO PCTNHB
LVALUE TOP_COLL
PCTHSP TOP_FOR
PCTASN ToMINe
TOP PRE TOP_POOR
TOP_NAT
— ——
=

Weights File lC:\GeoDa_oefeningen\spatial regression\nev V]
Models

©) Classic (@) Spatial Lag (C) Spatial Error

Save to Table

Run
Close Reset View Results

f
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Coefficient Rho reflects the spatial dependence in the sample data,

measuring the average influence on observations by their
neighboring observations.

Spatial Regression
‘\ Regression
\ SUMMARY OF OUTPUT| SPATIAL LAG MODEL) - MANIMUM LIKELIHOOD ESTIMATION
\ Data set T IEM IO R
\ Spatial Weight : newYork.gal
\ Dependent Variahle TOP_OWH  Mumber of Ohservations: 297
i Mean dependent war 15,487 MNumbher of Variahles : 9
4 3.D. dependent wvar : 15,7788 Degrees of Freedom 288
\ Lag coeff. (Rha) 0,244394
1
\ j cfr. R2= 0.495 with OLS regression
\\‘ R-sguared : 0,526513 Log likelihood : -1183.,23
\ Sg. Correlation : Bkaike info criterion : 2384.,45
\'v Sigma-sgquare 166,97 Schwarz criterion : 2417,7
3.E of regression 12,8217
The spatial lag term of
homeownership (W_TOP_OWN) | _________ /o _______
appears as an additional Variable Coefficient Std.Error z-value Probability
indicator. It has a positive <—1| w_ToP_oww 0,2443939 0,0710086 3,44175  0,0005781
effect and is highly significant. CONSTANT -2,432615 4,334781 -0,5611852 0,5746712 =
. PCTHHW 0,2890793 0,08031199 3,599454 0,0003190
As a result, the model fit is PCTHHB 0,1438108 0,04733031 3,03645  0,0023781
improved (higher R-square). TOP_COLL -0,2382829 0,07828846 -3,043653 0,0023374
TOF_LEMP 0,1286291 0,1055537 1,218613 0,2229911
TOF_FOR 0,08309245 0,06151569 1,350752 0,1767749
TO_MINC 0,0002428165 4,391116=-005 5,529721 0,0000000
TOF_FOOR -0,222484 0,1020332 -2,180506 0,0292199
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSEEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE FROB
Breusch-Pagan test 7 94,56192 0,.0000000
Although the introduction of the spacial lag DIAGNOSTICE FOR SPATIAL DEPENDEMCE
. d th del fit it didn’ k SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : newYork.gal
term improved the model fit, it didn’t make TEST] LE AR PROE
the spacial effects go away. Likelihood Ratio Test 1 15,28552 0,0000924
========================= FEHD OF REPORT ===================
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Spatial Regression

Now let’s review the results for the spatial error model.

Select Variables Dependent Variable

POLYID TOP_OWN
STATE Independent Variables
COUNTY PCTNHW
TRACT

PCTNHB
SCTRCTOO

TOP_COLL
HVALUE

> TOP_UEMP

TO_POP

TO_MINC
PCTHSP TOP_POOR
PCTASN -
TOP_NAT —
TOP_REC

Weights File lC:\GeoDa_oefeningen\spatial regressionnew vl

Madels
(@) Spatial Error

dong

(@ Classic (©) Spatial Lag

‘ Run ‘ Save to Table

l View Results l

Reset

g
3
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Coefficient of spatially
correlated errors is
positive. The model fitis
improved (higher R?).

Heteroscedasticity remais significant.

Also, spatial error stays significant.
Although allowing the error terms to
be spatially correlated improved the
model fit, it didn’t make the spatial
effects go away.

Spatial Regression

-Regression Repol u

Fegression

SIMMARY OF COUTP SPATIAL ERROE MODEL| - MAXIMUM LIKELIHOOD ESTIMATION
Data set el

Spatial Weight newYork.gal

Dependent Variabkle TOP_OWH Bumber of Ohservations: 287

Mean dependent var 15,487003 MNumber of Variahles H 7

5.D. dependent var 18,778784 Degrees of Freedom 290

Lag coeff. (Lambda) 0,291555

R-sguared 0,530663 R-sguared (BUSE) HE

3. Correlation S Log likelihood :-1182,719769
Sigma-square 165,508 &kaike info criterion 2379, 44
5.E of regression 12,865 BSchwarz criterion 2405.,3
Wariable Coefficient 3td.Error z-value Probability
CONSTANT 2,52046 3,817573 0,6602258 0,5091088
PCTHHW 0,330733Z2 0,07759524 4,262288 0,0000z02
FCTHHE 0,1398923 0,0508603 2,750521 0,0059502
TOF_COLL -0,2540283 0,08263879 -3,073959 0,0021125
TOF_UEMP 0,086%9458 0,10365%9 0,8387599 0,4016040
TO_MINC 0,0002603595 4,57898=-005 5,685971 0,0000000
TOF_FOOR -0,2237273 0,09935776 -2,251735 0,0243390
LAMEDA 0,2915555 0,08082348 3,607297 0,00030%5
REGEEZZION DIAGHOZTICE
DIAGHOSTICE FOR HETEROSEEDASTICITY
RANDOM COEFFICIENTS
TEST DF YVALUE FROE
Breusch-Fagan test B 358,441586 0,0000009

DIAGNOSTICS FOR SPATIAL DEPENDENCE

SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX newYork.gal
TEST DF VALUE FPROB
Likelihood Ratio Test 1 17,49713 0,0000288

-

m
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Spatial Regression

Comparing the spatial lag and spatial error models, we can see that both models yield improvement to the
original OLS model. Therefore, controlling spatial dependence improves model performance.

Now the question is which of the two models is better ? To some extent, this is an open question. The
general advice is first to look for a theoretical basis to inform your choice. When it is not so clear
theoretically, you can compare the model performance parameters : the R-squared and log likelihood. In
this example, the spatial error model has greater R-squared and log likelihood values. That provides a
statistical basis to adopt this solution.
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Compare Lagrange
Multiplier for
Lag and Error

Configurations

Lag
Significant :
Use Lag
Model

Both significant :
Compare Robust
Lagrange Multipliers

Use Model
with
highest
Robust LM
value

&

Spatial Regression
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Spatial dependency modeling : example 2

Analysis of poverty in the U.S. *

Source : http://csde.washington.edu/services/gis/workshops/SPREG.html

Spatial Regression

Quantile: PPOV
[0,02846:0,1485] (277)
[0,1488:0,1926] (278)
[0,1926:0,2364] (277)
[0,2365:0,2936] (273)
[

]
(I
(]
=
Bl [0.2936:0,5953] (277)
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Shapefile CA\GeoDa_oefeningen\spatial regression\south00.shp

l Add ID Variable... l Weights File ID Variable |FIPS -
Contiguity Weight
@ Queen Contiguity Order of contiguity 1 E

(") Rook Contiguity [ClInclude lower orders
Distance Weight

Select distance metric <Euclidean Distance > =
Yariahle for k-coordinates | <X-Centroids > hd
Yariahble for y-coordinates | <Y-Centroidss> -
© Threshold Distance | 00 |

{ | Message E

(@) |@ Weights file "south00.gal” created successfully.

lagged SQRTPPCY

&

Spatial Regression

24 -09 0.6 21 36
SQRTPPOV
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Regression Repo

R-sguared 0,779727 F-statistic 697,343
Adjusted R-sgquared 0,778608 Prob(F-statistic) 0
Sum squared residual: 2,84725 Log likelihood 2323.,69
Sigma-square 0,.00206472 Akaike info eriterion -4p31,38
3.E. of regression 0,0454392 Schwarz criterion -4589.5
Sigma-sgquare ML 0,00205281
5.E of regression ML: 0,045308
Select Variables Dependent Variable
s SQRTPPOV
YCOORD inhlee | 0 | TmTmT Tt o e
Ind dent Variabl
XCOORD PHS epencent yarap.es Variable Coefficient Std.Error t-Statistic Prohabhility
2 1 e
PBELK PFHH CONSTANT 0,3093621 0,009730428 31,59842 0,0000000
SORTPEHH PUNEM FHEF 0,07107947 0,009905332 7,177329 0,0000000
Q PEXTR PFHH 0,5292559 0,02109148 25.09335  0.0000000
1D P65UP PUNEM 1,460965 0,06340116 23,04319 0,0000000
METRO PEXIR 0,3446715 0,02537929 13,58082 0, 0000000
PHSPLUS FPESLUR 0,22194 0,03574824 6,208416 0,0000000
METRO -0,01047755 0,003193159 -3,28125 0,0010593
PHSPLUS -0,2835089 0,01369503 -20,70159 0,0000000
""""""""""""""""""""""""""""""""""""
REGRESSION DIAGNOSTICS
MULTICOLLINEARITY COWDITION HUMBER 21,917102
TEST ON NORMALITY OF ERRORS
TEST DF FROB
[v]Weights File |C\GeoDa_oefeningen\spatial regression\sou '] Jargue-Bera 40,0158 0.0000000
(C) Spatial Lag (©) Spatial Error
DIAGNOSTICS FOR HETE
done RANDOM COEFFICIE
TEST DF VALUE FROB
Breusch-Pa test 7 220,1356 0,.0000000
Run Save to Table csett test 7 0, 0000000
CATION ROBUST TEST
Close l l Reset l I View Results l DF FROB
3 N2
H H H DIAGNOSTICS FOR SPATIAL DEPENDENCE
violation of regression / FOR WEIGHT MATRIX : south00.gal
i (row-standardized weights)
assumptlons <— | TEST MI~DF WALUE FROB
Moran's 0,308056 19,3728246 0,0000000
Lagrange Multiplier (lag) 0,8632892 0,0000000
Robust LM (lag) 1 71,039 0,0000000
Lagrange Multiplier [error) 1 362,2829911 0,0000000
Robust LM (error) 1 132,4592589 0,0000000
Lagrange Multiplier (SARMA) 2 433,3225481 0,0000000

===========-===--=-=--=== END OF REPORT =============c================

Spatial Regression
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Select Variables

FIPS
YCOORD
XCOORD
PPOV
PBLK
SQRTPFHH

_

, |

Dependent Variable
SQRTPPOV
Independent Variables

PFHH
PUNEM
PEXTR
P65UP
METRO
PHSPLUS

Weights File IC:\GeoDa_oefeningen\spatial regression\sou VI

Models

Spatial Regression

Regression

Data set

Spatial Weight
Dependent Variable
Mean dependent wvar
5.D. dependent wvar
Lay cosff. [(Rho)

R-sruared
Sg. Correlation

SQRTPPOV
0,464095
0,09653R9
0,33423

0,822248

Mumber of Ohservations:

Humber of Variables
Degrees of Fresdom

Log likelihood
Akaike info ecriterion

(C) Spatial Error

Run Save to Table

(Rt

©) Classic

=]
=]
o
m

I View Results l

DIAGHOSTICE FOR SPATIAL DEPENDEHCE

SPATIAL LAG DEPEMDEMCE FOR WEIGHT MATRIX

TEST DF
Likelihood Ratio Test 1

south00.gal
VALUE
267,362

SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELTHOOD ESTIMATION
: south00
: south00.gal

1387
9
1378

2457 ,37
-4896,74
-4349,62

0.0000000
0,0000000
0,0000000
0,0000000
0,0000000
0,0000000
0,0000000
0,0084505
0,0000000

PROE
0,0000000

Sigma-square 0,00165654 Schwarz criteriaon
5.E of regression 0,0407006
Variable Coefficient 5td .Error z-value
W_SORTPPOV 0,3342297 0,0200363 16,6812
CONSTANT 0,1850717 0,01117582 16,56002
FHSF 0,06413139 0,00839158838 7,190554
PFHH 0,4595375 0,02030913 22,62714
PUNEM 1,061432 0,05982543 17,74215
PEXTR 0,2397121 0,02361957 10, 145887
PEELE 0,2189879 0,03202753 6,837492
METRO -0,007535908 0,002861533 -2,633521
PHSPLLS -0,2428265 0,01253364 -19,37401
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSEEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE
Breusch-Pagan test 7 307.,5235

PROE
0,0000000
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Select Variables Dependent Variable

YCOORD Independent Variables
XCOORD T
PPOV
PFHH
PBLK PUNEM
P&5UP
PHSPLUS

Weights File lC:\GeoDa_oefeningen\spatial regression\sou 'l
Models

(©) Spatial Lag

_ e

©) Classic

Run Save to Table
‘ Close | ‘ Reset ‘ ‘ View Results ‘

Spatial Regression

DIAGMOSTICS FOR SPATIAL DEPEWDENCE

TEST
Likelihood Ratio Test

SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX :

southl0.gal
DF VALUE
1 3h1,9057

1387
8
1379

2504 ,640854
-4993,28
-4951,4

0,0000000
0,0000000
0,0000000
0,0000000
0,0000000
0,0000000
0,1084986
0,0000000
0,0000000

FROE
0,0000000

Pegression
SUMMARY OF OUTPUT: ZPATIAL ERROE MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : southO0
Spatial Weight : south00.gal
Dependent Variable SORTPPOV Mumher of Observations:
Mean dependent wvar 0,464095 HMNumber of Variables
3.D. dependent var 0,096537 Degrees of Fresdom
Lag coeff. (Lamhda) 0,660223
R-sguared 0,846531 R-sgquared (BUSE)
Sg. Correlation HE Log likelihood
Sigma-square 0,00143024 Akaike info criterion
3.E of regression 0,0378185 Schwarz criterion
Variable Cosfficient Std . Error z-value
CONSTANT 0,300464 0.0107058 20,06354
FHEF 0,0992286 0,01622671 6.,11513%
FFHH 0,6589877 0,02298421 28,67133
PLMEM 0,8935399 0,06233104 14,33539
PEXTR 0,3092319 0,027517935 11,23746
PaSUR 0,213199 0,03870122 5.508843
METRO -0,004556235 0,002538514 -1,6045%78
PHSFPLLZ -0,2476567 0,01297538 -19, 08666
LAMBDA 0,6602234 0,0259337 25,45813
REGEESZION DIAGHOITICS
DIAGHOZTICE FOR HETEROSZEEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALIE
Breusch-Pagan test 7 443,7842

FROB
0,0o000000
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Spatial Regression

Compare Lagrange,
Multiplier for
Lag and Error

Configurations

lag

Signifp -t :
1’s€ Lag
Model

Both significant :
Compare Robust
Lagrange Multipliers

Model R2 Log Likelihood
Use Model OLS 0,780 2323,69
with Spatial Lag 0,822 2457,37
L tial del i
Robust LM spatial error mode Spatial Error 0,847 2504,64

value
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LISA Significance Map: south00, |_ERR_RESIDU (999 perm)

LISA Significance Map: south00, |_SQRTPPOV (999 perm)

1 Mot Significant (892) [ Not Significant (1234) Spatial Regression
[ p=0.05216) [ p=0.05 (110

B p=001(150) M p=001(3)

I p=0001(129) M p=o0001(12)

I -o0.0001(0) M p=00001(0)

LISA Cluster Map: south00, |_SQRTPPOV (339 perm) LISA Cluster Map: south00, |_ERR_RESIDU (999 perm)

E ot Significant (352) ] Not Significant (1234)
High-High (239) - High-Hiah (49
W LowlLow (227) gh-High (49)
0 LowHigh (17) M Low-Low (24)
1 High-Low (12) [ Low-High (40)
[ High-Low (40)

The spatial error form results in a substantial reduction of spatial autocorrelation.
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Analyzing spatial heterogeneity with
geographically weighted regression

GWR
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Geographically Weighted Regression

Traditional regression analysis describes a modelled relationship between a dependent variable and a set
of independent variables. When applied to spatial data, the regression analysis often assumes that the
modelled relationship is stationary over space and produces a global model which is supposed to describe
the relationship at every location in the study area. This would be misleading, however, if relationships
being modelled are intrinsically different across space. One of the spatial statistical methods that attempts
to solve this problem and explain local variation in complex relationships is Geographically Weighted
Regression (GWR).

In a global regression model, the dependent variable is often modelled as a linear combination of
independent variables, where a parameter belonging to each variable is assumed to be stationary over the
whole area (i.e. the model returns one value for each parameter). GWR extends this framework by
dropping the stationarity assumption: the parameters are assumed to be continuous functions of location.
The result of the GWR analysis is a set of continuous localised parameter estimate surfaces, which
describe the geography of the parameter space. These estimates are usually mapped or analysed
statistically to examine the plausibility of the stationarity assumption of the traditional regression and
different possible causes of non-stationarity.

The definitive text on GWR is : Fotheringham, A.S., Brunsdon, C. & Charlton, M.E., Geographically Weighted Regression : The Analysis of
Spatially Varying Relationships, Chichester, Wiley, 2002.
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Geographically Weighted Regression

Differences between local and global statistics

Global

Local

Summarize data for whole region
Single-valued statistic
Non-mappable

GIS unfriendly

Aspatial or spatially limited
Emphasize similarities across space
Search for regularities or ‘laws’

Local disaggregation of global statistics
Multi-values statistic

Mappable

GIS friendly

Spatial

Emphasize differences across space
Search for exceptions or local “hot-spots’

(Source : Fotheringham. Brunsdon and Charlton. 2002, pp. 6)
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GWR
Geographically Weighted Regression

The use of linear regression is common in many areas of science. Ordinary linear regression implicitly
assumes spatial stationarity of the regression-model that is, the relationships between the variables
remain constant over geographical space. We refer to a model in which the parameter estimates for every
observation in the sample are identical as a global model.

Spatial non-stationarity occurs when a relationship (or pattern) that applies in one region does not apply
in another. Global models are statements about processes or patterns which are assumed to be stationary
and as such are local independent, i.e. are assumed to apply to all locations. In contrast local models are
spatial disaggregations of global models, the results of which are location-specific. The template of the
model is the same : the model is a linear regression model with certain variables, but the coefficients alter
geographically. If the parameter estimates are allowed to vary across the study area such that every
observation has its own separate set of parameter estimates we have a local model.

GWR does not assume the relationships between independent and dependent variables are constant
across space. Instead, GWR explores whether the relationships between a set of predictors and an
outcome vary by geographical location. GWR is suggested to be a powerful tool for investigating spatial
non-stationarity in the relationship between predictors and the outcome variable.
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GWRA4 is new release of a Microsoft Windows based application for calibrating geographically weighted
regression models, which can be used to explore geographically varying relationships between
dependent/response variables and independent/explanatory variables.

HEIBjH)

Step 1: Data > ‘ Step 2: Model > | Step 3: Kernel > | Step 4: Output > | Step 5 4[>

_File ®

Session title
Title text (optional)

Data file
File path

Delimiter/Format
() Space @ Comma (CSV)") Tab () dbaselV

Number of field Number of area:

’ @ First 10 lines © Al View Data

GWR4 is a tool for modellina spatially varvina relationships amona
" variables by calibratina Geoaraphically Weiahted Rearession (GWR)
b Ceoaraphically Weiahted Generalised Linear Models (GWGLM)
with their semiparametric variants.
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_ _ Chose a geographic
Give the session a name kernel type Execute the session

Vod i v

Spec
and variable settings storing the modelling results

For an extensive review of these 5 steps, see T. Nakaya, GWR4 User Manual, update 7 may 2012.
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. An introduction to macro-level spatial nonstationarity : A geographically weighted

regression analysis of diabetes and poverty

Type |l diabetes is a growing health problem. Because the burden of diabetes falls disproportionally on
less advantaged individuals, poverty is one of the most important risk factors for diabetes.

Micro-level (individual-level) research has consistently found positive associations between diabetes and
poverty. Poverty and diabetes may be related because economic disadvantage may limit people to poorer
diets and more sedentary lifestyles.

Macro-level (context-level) investigations have also found a positive association between diabetes and
poverty. Rates of diabetes are higher in areas with higher economic deprivation.

What follows, provides a study of the geographical variability in the relationship between poverty and
diabetes. We first show how a classical ordinary least squares regression captures the “global” and
positive relationship between diabetes and poverty (an increase in the concentration in poverty is
accompanied with an increase in the prevalence of diabetes). We then make use of an exploratory
geographically weighted regression to specify a local modal. The findings reveal that the diabetes-poverty
relationship macro-level relationship varies by geographical space
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Theoretically, spatial non-stationarity is based on the concept of the social construction of space. The
interaction between individuals with each other and their physical environment produces space. Human
beings are just as much spatial as temporal beings. By temporal, we mean that we are most influencedby
what is immediate in space. What happens near us matters more than non-proximal events. Human’s
spatiality and temporality are essential and equal powerful in explaining human behavior. Consequently,
everything that is social is inherently spatial, just as everything spatial is inherently socialized.

From this perspective, we analyse how the macro-level relationship between diabetes and poverty unfolds
over geographical space.
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* Investigations on spatial non-stationarity focus on the phenomenon that two measurements taken from
geographically close locations are often more similar than measurements from more widely separated
locations (Tobler’s law (1970, p. 236) : “Everything is related to everything else, but near things are more
related than distant things”).

*  For this reason, spatial autocorrelation has been developed to deal with the tendency toward
interdependence among spatial data. Investigating diabetes prevalence requires we expand our
understanding of how macro-level relationships vary as a function of geographical distance.

* Inaglobal modal, we can hypothesize that poverty and diabetes are positively related. In a local modal,

we can hypothesize that the diabetes-poverty macro-level relationship will be spatial non-stationary.

Tobler, W.R., A computer movie simulating urban growth in the Detroit region, Economic Geography, 46, 1970, pp . 234-240.
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Traditionally non-spatial research, including the OLS approach, assumes that the nature of statistical
relationships is the same for all points within the entire study area. With GWR, we can explore how the

diabetes-poverty relationship varies over space. The OLS results are thus for the “global moedel” findings
while the GWR outputs are the “local” analyis results.

We first execute an OLS multivariate regression to show the linear association between diabetes and
poverty in US counties in the South Atlantic area (N=588)". The goal of this “global model” is to verify the
positive association found in previous studies. In the OLS model we use the percentage of diabetes in the
county as the dependent variable and the percentage in poverty as the independent variable. We control
the relationship between poverty and diabetes prevalence for median income of households and the

percentage of people who completed high school. We then develop a GWR-model to account for spatial
variations. The GWR model contains the same variables used in the OLS regression.

* Source : http://www.ers.usda.gov/data-products/county-level-data-sets.aspx

We focus on the 588 contiguous counties because GWR analysis requires that all polygons be physically adjacent or in near physical proximity to at least
one other polygon with data on the variables of interest.
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Global results

*  Poverty is positively associated with diabetes. The results of OLS-model 1 demonstrate that an
increase of one percentage point in the poverty concentration of a county is associated with a 0,15
percent increase in diabetes.

* Model 1 has an R? of 0,262. While diabetes prevalence and percent in poverty are statistically
significantly related, a substantial proportion of the variation in diabetes prevalence remains
unexplained.

* After adding median income of households and the percentage of people who completed high
school to the regression equation, the effect of poverty is substantially reduced and no longer
significant and even the sign of the coefficient for poverty changes from positive to negative. The
R-square value for model 2 achieves a respectable 0,395".

* Wealso note a problem : the regression equation shows strong spatial autocorrelation (Moran’s | =
0,328 ; p <001)™ a clear indication that the model is in violation with at least one of the
assumptions underlying standard linear regression. The Moran test tells us that the residuals are
not independent. Moreover, the Koenker-Bassett test for heteroscedasticity indicates that the
residuals also are not distributed identically.

* Collinearity diagnostics were estimated using SPSS 20.0, and no problems of multicollinearity were found among the independent variables.
The collinearity diagnostics used were the variance inflation factors (VIF) and tolerances for individual variables.
Multicollinearity is said to exist if the VIF is 5 or higher (or equivalently, tolerances of 0,20 or less). The highest VIF in this analysis was 3,314 and
the lowest tolerance was 0,302 for median income of households.

** Moran’s | is strongly positive, indicating powerful positive autocorrelation (clustering of like values). LISA analysis demonstrates that most counties are
found in the high-high and low-low quadrants.

105
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*  Comparing the residual spatial autocorrelation (I = 0,328) with the spatial autocorrelation for the dependent
variable (I = 0,454) tells us that spatial autocorrelation in one or more independent variables “explains” a
portion of the spatial autocorrelation in the dependent variable™.

* ltisfrequently the case that the independent variables in a regression model can almost completely
account for the spatial autocorrelation in a dependent variable, thus removing a problematic spatially
autocorrelated residual. However, in the present case, the regressors have not satisfactorily accounted for
spatial dependence in the data, and a correction to the model clearly is necessary. But what type of
correction ? Might there be spillover effects among counties that influence the diabetes prevalence of their
neighbors (spatial lag model) ? Or does the residual dependence in the model likely stem from omitted
variables on the right-hand side of the regression equation, thus suggesting a spatial error model ?

* Moran’s | is calculated by specifying a matrix of weights that characterizes the structure of local dependence. In this analysis “neighbors” are defined
under the “first-order queen” convention, meaning that the neighbors for any given county “A” are those other counties that share a common
boundary with “A” (or single point of contact with “A”). Importantly, “A” is not considered a neighbor of itself and is excluded from the average.
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We used a spatial regression model to control for the spatial autocorrelation. We chose which spatial
dependence model to use (spatial lag or spatial error) using Lagrange Multiplier tests. Although both
models exhibit significant spatial dependence, we used the model with the highest test statistic, in this
case, the spatial error model.

Aside from the remaining heteroscedasticity, the spatial error model appears to be a plausible alternative
to the OLS specification. The AIC score is lower and the explanatory power of the model increases
considerably over the OLS regression, with an R? of 0,538.

In contrast with OLS-model 2, the effect of poverty on diabetes is statistically significant, independent
from the median income of households and the percentage of people who completed high school.

It is still not clear if spatial non-stationarity is a concern in our analysis. It is necessary to investigate the
homoscedastic assumptions underlying the OLS with local modeling.
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OLS and spatial regression models predicting the prevalence of diabetes in US South Atlantic counties (N=588)

OLS (1) OLS (2) Spatial Error
independent variables coeff. std.err) coeff. std.err coeff. std.err
constant 9,066 ** 0,185 18,662 ** 20,146 == 1,034
% poverty 0,151 == 0,010 -0,007 0,017 -0,040 * 0,014
median income of households -0,000068 ** 0,000008 -0,000077 ** 0,000009
% completed high school -0,051 == 0,012 -0,059 = 0,012
spatial error (Lambda) 0,530 **

heteroscedasticityj 30,240 **g 55,547 **g 48,399 **e
R? 0,262 0,395 0,538
AlQ 2233,690 2120,650 2002,780
Lagrange Multiplier (Lag) 72,872 **
Robust LM (Lag) 1,642
Lagrange Multiplier (Error) 141,604 **
Robust LM (Error) 70,375 *+

*p<0,05 ** p<0,01

0O Koenker-Bassettt test for heteroscedasticity

® Breusch-Pagan test for heteroscedasticity

OLS models and the spatial error model are estimated by making use of Open GeoDa 1.2.0 (august 2012) ©Luc Anselin, 2011,2012
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Local results

* Inusing spatial regression models we assume that the spatial process accounting for diabetes levels is the
same across the study area. That is, the relationship is spatially stationary. However, few social processes
will be found to be so constant over space. Global models will hide potential heterogeneity, or spatial non-
stationarity, in the determinants of diabetes. GWR provides a method to access the degree to which the
relationship between the potential determinants and the prevalence of diabetes varies across space.

*  The spatial non-stationarity of the relationship of each independent variable to the dependent variable
can be assessed to determine whether the GWR method offers any improvement over a global regression
model. The variability in the observed GWR estimates for the spatial units is compared to the variability of
the GWR results from a large number of allocations of the analytical data across the units. Where one
finds a significant difference between the variability of an observed estimate to those computed using the
randomized data, spatial non-stationarity for that independent variable is indicated.
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lagged residual

Geographically Weighted Regression

*  We first made use of a local Moran’s | cluster analysis of the residuals of the GWR model as a diagnostic
for the collinearity of the GWR residuals. We found no violations of residual independence.

LISA Significance Map: USdiabetes_SA2, |_residual (999 perm)
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Standardized residuals GWR-analysis
US Diabetes South Atlantic Counties (N=588)
Il model overprediction

()
(] model underprediction
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The GWR results can best be summarized through the maps of the parameter estimates and the Monte
Carlo tests. We provide maps of the local R?values and for each of the independent variables with a
significant Monte Carlo test.

The Monte Carlo tests for spatial variability of parameters indicate that the associations between the
independent variables and diabetes are all non-stationary across space. Explicitly, the associations we
found in OLS could not be generalized to anywhere in the South Atlantic region. In contrast to OLS, the
GWR model explains 62,2 % of the total variance.

As shown on the map of the local R? values, the total variance explained by the local model ranges from
16,1 % to 81,1%. The model fits the data well in the northern counties. Especially in the southern
situated counties, there are areas that may benefit from a model with additional covariates. Herein lies
the value of the GWR approach : without the ability to map the local R?, we would not know where our
model could be improved with additional covariates.
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Local R-square values

US Diabetes South Atlantic Counties (N=588)
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The model results of the GWR can be interpreted in two ways. Those interested in a particular area can
use the model results for that place to get a multivariate understanding of key local determinants of the
diabetes prevalence. We will not do this here. An alternative way to examine the results is by considering
for each determinant the varying nature across the counties of the South Atlantic region.

For example, the GWR coefficient for the percentage of poverty ranges from -0,33 to 0,32 which signals
that the poverty-diabetes macro-level association is spatially non-stationary. The blue marked counties
indicate areas where an increase in poverty predicts lower diabetes prevalence. The shift to light-blue
marked areas captures the spatially non-stationary relationship between poverty and diabetes. The
poverty-diabetes relationship fluctuates from negative to positive as a function of geographical location.
Similar results exist for the relationship between median household income, resp. educational attainment
and diabetes. In short, after accounting for location, we find that macro-level associations between
predictor variables and diabetes fluctuate as a function of geography.
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GWR estimate % poverty

US Diabetes South Atlantic Counties (N=588)
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GWR estimate median income

US Diabetes South Atlantic Counties (N=588)
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GWR estimate % high school
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The previous analysis demonstrates that GWR addresses the need for place-specific or place-sensitive forms
of analysis.

Effective locational decision making is essential for properly addressing many socio-economic, demographic
and health related concerns. Presently, these decisions are supported by quantitative models, which are
potentially powerful tools, but whose estimates are often affected by uncertainty, which reduces their
reliability.

Uncertainty in the model parameters stems from two proporties of geographical phenomena :
— spatial dependence : near things are more related than distant things ;
— spatial non-stationarity : variability over space ;

These two properties are mutually related, and most observed processes exhibit both, simultaneously.

Advanced spatial analytical methods exist to correct for the effects of each property. However, despite the
recognized simultaneity of their occurrence, each advanced spatial method is designed to address only one
property. Spatial autoregressive methods address spatial dependence but do not account for non-
stationarity ; geographically weighted regression addresses non-stationarity but does not account for spatial
dependence.
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